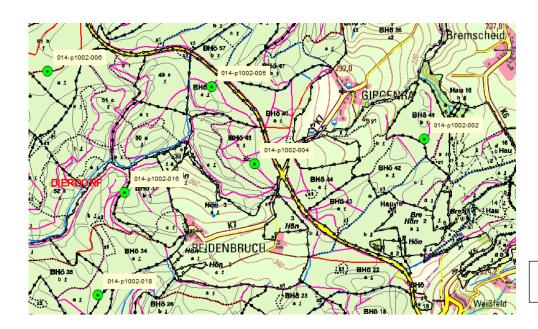
Einführung in die Waldstandortkartierung 11.04.2025

Gemeinsame Exkursion

Fagus-Forstplanung
Anton.M.Barth und Michael Wern
Hauptstraße 111
66740 Saarlouis


Landesforsten Rheinland-Pfalz
Forschungsanstalt für Waldökologie und Forstwirtschaft Rheinland-Pfalz
Hauptstraße 16
D 67705 Trippstadt

Fragestellungen:

- 1. Einführung in die Grundlagen der Standortstypenkartierung
- 2. Standortfaktoren wie Boden, Klima und Wasserhaushalt
- 3. Ergebnisse der Standortskartierung am Bodenprofil
- a. Baumartenempfehlungen im Klimawandel
- b. Nährstoffnachhaltigkeit bei der Holzernte
- c. Bodenschutzkalkung

Auf einen Blick:

Seite 2	Lagekarte
Seite 3	Bodenprofil-1-ARNR: 014-p1002-004 Standortstyp: kolline, frische, stark staunasse, Hydromorphe Decklehme über Sandstein-Saprolithlehm des Devon
Seite 4	Bodenprofil-2-ARNR: 014-p1002-018 Standortstyp: kolline, mäßig frische, terrestrische, Schuttlehme aus Sandstein des Devon
Seite 5	Bodenprofil-3-ARNR: 014-p1002-016 Standortstyp: kolline, frische, terrestrische, Decklehme über Tonschiefer-Saprolith des Devon
Seite 6	Bodenprofil-5-ARNR: 014-p1002-006: kolline, sehr frische, schwach staunasse, Hydromorphe Lössdecklehme über Tonschiefer-Saprolithlehm des Devon
Seite 7	Bodenprofil-6-ARNR: 014-p1002-002 Standortstyp: kolline, sehr frische, schwach staunasse, Hydromorphe Lösslehme (wöL) /
Seite 8-15	Anhang Grundlagen der Standortskartierung /Standortsinformationssystem Baumartenwahl/ Nährstoffnachhaltigkeit

Exkursionspunkte Revier Bad Hönnigen

Bodenprofil-1-ARNR: 014-p1002-004 Standortstyp: kolline, frische, stark staunasse, Hydromorphe Decklehme **über** Sandstein-Saprolithlehm des Devon (wDL/^sJL'd)/ Waldbild: Kahllage mit Weißtanne, Buche, Birke / Basentyp: tief basenarm

Niederschlagsgruppe: 750-850 mm/Jahr (1960-2000)

nutzbare Feldkapazität 137 mm, bis zur effektiven Wurzeltiefe 85 cm

Daten Bodenprofil: (Kurzform)

Tiefe (cm)	HORIZ	Bodenart	Steine%	Hydromorphie
-3	Ah	schluffiger Lehm	3	
-35	Bv-Sw	schluffiger Lehm	3	naßgebleicht 30-60%
-100	II-Cjv-Swd	sandig-lehmiger Schluff	35	marmoriert 30-60%

Bodentyp: Braunerde-Pseudogley

Einschränkende Faktoren für die Baumartenwahl sind hier:

- starke Staunässe
- tief-basenarme Nährstoffversorgung (Basentyp)
- Anstieg der Temperatur

Baumarteneignung

Zeitraum	Wärmestufe	gut-geeignet	geeignet	möglich
Grundlage	kollin-14,9 °C	Traubeneiche	Kiefer	(Buche)
nahe-Zukunft	kollin-15,8 °C	Traubeneiche	Kiefer	(Buche)
ferne-				
Zukunft	planar-17,4 °C	Traubeneiche		(Buche)

Fichte II.0 EKL / hohe Vulnerabilität (Stufe 4)-Kalkung alle 20 Jahre

Bodenprofil-2-ARNR: 014-p1002-018 Standortstyp: kolline, mäßig frische, terrestrische, Schuttlehme **aus** Sandstein des Devon (NL^s'd)/Waldbild: 160 jährige Buche (EKL II.8) und Traubeneiche (EKL II.1)

Basentyp: tief basenarm

Niederschlagsgruppe: 750-850 mm/Jahr (1960-2000)

nutzbare Feldkapazität 54 mm, bis zur effektiven Wurzeltiefe 120 cm

Daten Bodenprofil: (Kurzform)

Tiefe (cm)	HORIZ	Bodenart	Steine%
-3	Ah	schwach sandiger Lehm	35
-40	Bv	schwach sandiger Lehm	50
-70	Cv	schwach sandiger Lehm	65
-120	mCv	schwach sandiger Lehm	90

Bodentyp: Braunerde

Einschränkende Faktoren für die Baumartenwahl sind hier:

- hoher Steingehalt=weniger Feinerde / Frischestufe: mäßig frisch
- tief-basenarme Nährstoffversorgung (Basentyp)
- Anstieg der Temperatur +2,6 bis 2100

Baumarteneignung:

Zeitraum	Wärmestufe	gut-geeignet	geeignet	möglich
Grundlage	Kollin-14,9°C	Bu/Tei	Rei/Ki	Sei/Eka/Dou
nahe-Zukunft	Kollin-15,7 °C	Bu/Tei	Rei/Ki	Sei/Eka/Dou
ferne-Zukunft	Planar-17,5°C	Bu/Tei	Rei	Sei/Eka/Ki

Ei/Bu EKL II.5 sehr hohe Vulnerabilität (Stufe 5) Bodenschutzkalkung alle 10 Jahre

Bodenprofil-3-ARNR: 014-p1002-016 Standortstyp: kolline, frische, terrestrische, Decklehme über Tonschiefer-Saprolith des Devon (DL/*TsfJ'd)/ Waldbild: Buche / Birke (40 jährig) Basentyp: Untergrund basenhaltig / [häufiger Standortstyp]

Niederschlagsgruppe: 750-850 mm/Jahr (1960-2000)

nutzbare Feldkapazität 123 mm, bis zur effektiven Wurzeltiefe 120 cm

Daten Bodenprofil: (Kurzform)

Tiefe (cm)	HORIZ	Bodenart	Steine%
-10	Ah	schluffiger Lehm	10
-20	(S-)Bv1	schluffiger Lehm	15
-50	Bv2	schluffiger Lehm	35
-90	II-Bv-Cv	schluffiger Lehm	55
-130	III-Cjv	stark toniger Schluff	75

Bodentyp: Braunerde

Einschränkende Faktoren für die Baumartenwahl sind hier:

Untergrund basenhaltig

Hier steigt die Basensättigung erst an der Untergrenze des Hauptwurzelraums an. Nur tiefwurzelnde Altbäume sind in der Lage, die Nährstoffe aufzunehmen

Anstieg der Temperatur +2,7 °C/ dadurch Verlust der Ndh Fi/Dou/Ta

Zeitraum	Wärmestufe	gut-geeignet	geeignet	möglich	
Grundlage	kollin 15,6°C	Tei/StEi/Bu	Rei/Hbu/Bah/Wli/Ki	Eka/Fi/Dou/Ta	
nahe-Zukunft	planar 16,2°C	Tei/StEi/Bu	Rei/Hbu/Bah/Wli/	Eka/Ki	
	warm-planar				
ferne-Zukunft	18,3°C	bisher keine Empfehlung			

Buche EKL II.0 mittlere Vulnerabilität (Stufe 3) Bodenschutzkalk alle 20J

Bodenprofil-4-ARNR: 014-p1002-005 Standortstyp: kolline, ziemlich frische, terrestrische, Decklehme über Sandstein-Saprolith des Devon (DL/^sJ'd)/ Waldbild: Kahllage mit Restbestand an europäische Lärche (65 jährig-EKL I.7) Basentyp: tief basenarm

Niederschlagsgruppe: 750-850 mm/Jahr (1960-2000)

nutzbare Feldkapazität 103 mm, bis zur effektiven Wurzeltiefe 100 cm

Daten Bodenprofil: (Kurzform)

Tiefe (cm)	HORIZ	Bodenart	Steine%	Hydromorphie
-5	Ah	schluffiger Lehm	30	
-35	Bv	schluffiger Lehm	35	
-70	II-Bv-Cjv	schluffiger Lehm	45	
-120	II-S-Cjv	schluffiger Lehm	65	marmoriert 10-30%

Bodentyp: Braunerde

Einschränkende Faktoren für die Baumartenwahl sind hier:

- tief basenarm
- Anstieg der Temperatur +2,5 °C bis 2100

Zeitraum	Wärmestufe	gut-geeignet	geeignet	möglich
Grundlage	kollin 14,9°C	Bu/Tei	Rei/Ki	Sei/Eka/Dou
nahe-Zukunft	kollin15,8°C	Bu/Tei	Rei/Ki	Sei/Eka/ki
ferne-Zukunft	planar 17,4°C	Bu/Tei	Rei/Ki	Sei/Eka/Dou

Kiefer(Lä) EKL II.0 miittlere Vulnerabilität (Stufe-3) Bodenschutzkalk. alle 40 Jahre

Bodenprofil-5-ARNR: 014-p1002-006: kolline, sehr frische, schwach staunasse, Hydromorphe Lössdecklehme über Tonschiefer-Saprolithlehm des Devon (wöDL/*TsfJ'd) / Waldbild: Buche (56 jährig EKL-0,1) Bergahorn, einzelne **Eschen Mittelboden-basenreich**

Buche mit Top-Ertragsklasse = hohe Entzüge aber hohe Bodenvorräte z.B. 3,5 t/ha Calcium, 1,7 t/ha Magnesium

geringe Vul (Stufe 2) KEINE KALKUNG erforderlich

Niederschlagsgruppe: 750-850 mm/Jahr (1960-2000)

nutzbare Feldkapazität 162 mm, bis zur effektiven Wurzeltiefe 120 cm

Daten Bodenprofil: (Kurzform)

Bodentyp: Pseudogley-Parabraunerde

Baumartenwahl: kaum Einschränkungen---Basentyp: viele Baumarten 15

Tiefe (cm)	HORIZ	Bodenart	Steine%	Hydromorphie
-7	Ah	schluffiger Lehm	0	
-25	S-(Al-)Bv	schluffiger Lehm	2	
-50	Sw-Bv	schluffiger Lehm	3	marmoriert 10-30%
-75	II-Btv-Swd.1	schluffig toniger Lehm	3	marmoriert 30-60%
-100	II-Btv-Swd.2	schluffig toniger Lehm	3	marmoriert 30-60%
-120	III-Cjv-Swd	mittel toniger Schluff	40	marmoriert 60-70%

aber Klimawandel +2,5°C

schwache Staunässe (S2) kann ein Vorteil bedeuten

Zeitraum	Wärmestufe	gut-geeignet	geeignet	möglich
Grundlage	kollin 15,0°C	Bu/Wli	Tei,Sei,Rei,Hbu, Bah, Sah, Fah, Kir, Els, Wnu, Ki	Dou, Ta
nahe-Zukunft	kollin 15,5°C	Bu/Wli	Tei, Sei, Rei, Hbu, Bah, Sah, Fah, Kir, Els, Wnu, Ki	Dou, Ta
ferne-Zukunft	planar 17,74°C	Bu/Wli/Hbu	Tei, Sei, Rei, Sah, Fah,x Kir, Els, Wnu	Bah, Ki

Bodenprofil-6-ARNR: 014-p1002-002 Standortstyp: kolline, sehr frische, schwach staunasse, Hydromorphe Lösslehme (wöL) / Waldbild: Buche (90 jährig EKL-0,3) Basentyp: Mittelboden basenreich

Niederschlagsgruppe: 750-850 mm/Jahr (1960-2000)

nutzbare Feldkapazität 149 mm, bis zur effektiven Wurzeltiefe 100 cm

Daten Bodenprofil: (Kurzform)

Bodentyp: Pseudogley-Parabraunerde

Baumartenwahl: kaum Einschränkungen / Klimawandel +2,7 °C

Zeitraum	Wärmestufe	gut-geeignet	geeignet	möglich
Grundlage	kollin 15,0°C	Bu/Wli	Tei,Sei,Rei,Hbu, Bah, Sah, Fah, Kir, Els, Wnu, Ki	Dou, Ta
nahe-Zukunft	kollin 15,5°C	Bu/Wli	Tei, Sei, Rei, Hbu, Bah, Sah, Fah, Kir, Els, Wnu, Ki	Dou, Ta
ferne-Zukunft	planar 17,7°C	Bu/Wli/Hbu	Tei, Sei, Rei, Sah, Fah,x Kir, Els, Wnu	Bah:c3, Ki:c3

Buche mit Top-Ertragsklasse = hohe Entzüge, aber hohe Bodenvorräte (mehr Löss als in Profil---wöDL/*TsfJ'd 014-p1002-006

- 1 t/ha- Kalium
- 6 t/ha Calcium
- 2 t/ha Magnesium

geringe Vul (Stufe 2) KEINE KALKUNG erforderlich

ANHANG

1. Einführung in die Grundlagen der Standortstypenkartierung

Grundzüge des Standortskartierungsverfahren in Rheinland-Pfalz (A.Sta.96)

Zusammenführung der Kartierung nach A.Sta.61 mit der Modifikation des Substratreihenverfahren der Pfalz und Zuschnitt auf die heutige waldbauliche und standortskundliche Umfeld (Waldschäden, Kalamitäten, naturnaher Waldbau).

Ziel der Kartierung ist der Standortstyp, dieser hat insgesamt 4 Bestandteile:

ökologische Wärmestufen (syn. Höhenstufen). Mittlere Vegetationszeittemperatur (tvS) – Mai bis September im Bezugszeitraum 1960-2000

Tab. 1: Ökologische Wärmestufen in Rheinland-Pfalz (Bezugszeitraum 1961-2000) Vegetationszeit Mai-Sept.

tvS	> 16 C	16 - 14 C	14 - 13 C	< 13 C
Wärmestufe	planar	kollin	submontan	montan

Frischestufe

Eine Besonderheit des rheinland-pfälzischen Standortserkundungsverfahrens ist die quantitative Bewertung des Wasserhaushaltes des Einzelstandortes. Grundlage sind ermittelte Beziehungen zwischen der Wuchsleistung von Baumarten und den nach Niederschlagsgruppen, Relief und Exposition stratifizierten nutzbaren Wasserspeicherkapazitäten mittlerer Standorte (HOFFMANN 1977). In der praktischen Anwendung wird die (Gesamt-) Wasserhaushaltsstufe anhand der Schätzung der bodenkundlichen und klimatischen Kennwerte (nWSK, Relief, Exposition und Niederschlagsgruppe) einerseits und der Messung von Baumhöhen andererseits abgewogen

Tab. 3: Wasserhaushaltsstufen und Oberhöhenbonitäten im Alter 100 (Fi mäß. Durchforstung, WIEDEMANN; Bu mäß. Durchforstung, SCHOBER) auf kollinen Standorten ohne Stauwassereinfluß (Abweichungen: Buche kollin, gute Nährstoffversorgung +0,5 Ekl.; mittlere Nährstoffversorgung, submontan: -0,25 Ekl.; mittlere Nährstoffversorgung, montan: -0,5 Ekl.).

Fichte Ekl. a100	≥ IA.0	1.0	1.5	II.0	II.5	III.0	III.5	IV.0	≤ V.0
Buche Ekl. a100	≥ IA.5	1.5	II.0	II.5	III.0	III.5	IV.0	IV.5	≤ V.5
Wasserhaus -haltsstufe	äußerst frisch	sehr frisch	frisch	ziemlich frisch	mäßig frisch	mäßig trocken	trocken	sehr trocken	äußerst trocken
	äfr	sfr	fr	zfr	mfr	mtr	tr	str	ätr

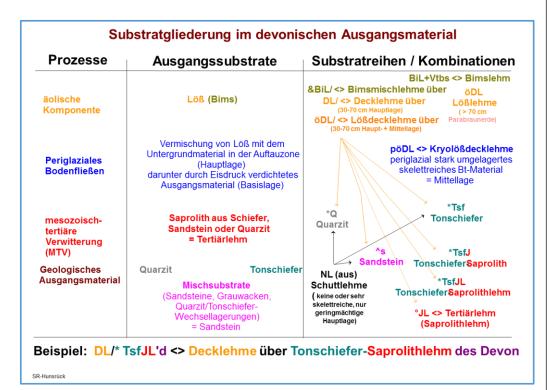
Hydromorphie: (falls vorhanden)

Standorte (Substratreihen) mit Grund- oder Stauwasserbeeinflussung werden durch eine Grund- oder Staumässestufe gekennzeichnet und gegliedert

Tab. 4: Grund- bzw. Staunässestufen

Stau-/Grundnässestufe	Kurzform	Hydromorphie (Merkmale >=30% der Fläche im Horizont) unter der Geländeoberfläche in cm	Feuchthumus- Auflage/Torf cm	Dauer des Stau-/ Grundwassers im Oberboden
schwach stau-/grundnaß	s2 / g2	65 - 45		
(mittel) stau-/grundnaß	s3 / g3	45 - 25		
stark stau-/grundnaß	s4 / g4	25 - 0		4-7 Monate
sehr stark stau-/grundnaß	s5 / g5	25 - 0	10-30	7-10 Monate
äußerst stau-/grundnaß	s6 / g6	25 - 0	>30	> 10 Monate

In Böden die von Stau- oder Grundwasser beeinflußt sind laufen unterschiedlichste Prozesse ab. Wesentlich sind hier zu nennen:


Reduktion: bei Wassersättigung, werden dreiwertige Eisen und Manganverbindungen reduziert. Eisen und Mangan können dann an lösliche Hydrogenkarbonate oder organische Komplexe verlagert werden. Fahlgraue Flecken zeigen die Zonen der Eisen-Mangan Verarmung

Oxidation: Trockenzeit, besonders an Wurzelbahnen und Wurzelröhren. Höhere Eisen und Manganverbindungen fallen aus, es entsteht Goethit. Es bilden sich rostrote bis schwarzbraune Flecken, Streifen und Konkretionen.

Substratreihe: Zusammenfassung von Böden,

die für die Vegetation ähnliche Substrat (Ausgangsmaterial) bilden d.h.

- Bodenart (Ton, Schluff und Sand)
- Bodenartschichtung (Decke / über)
- Gefüge (z.B. Einzelkorngefüge "Sand" Polyedergefüge "Ton")
- Geologisches Ausgangsmaterial (z.B. Tonschiefer des Devon)

Somit "entstehen" die Substratreihen aus einem Baukastensystem und es gibt sehr viele Kombinationen (Landesdatensatz:1500 Substratreihen).

Die Substratreihen zusammengefasst zu sogenannten7 Basentypen:

1. tief basenarm/Podsol

Die Böden sind tiefreichend verarmt, und im ganzen Wurzelraum herrscht Mangel an Calcium und Magnesium, der Oberboden ist sehr stark sauer, den nur sehr angepasste Pflanzenarten ertragen können

2. tief basenarm

Die Böden sind tiefreichend verarmt, und im ganzen Wurzelraum herrscht Mangel an Calcium und Magnesium, den nur angepasste Pflanzenarten ertragen können

3. Untergrund basenhaltig

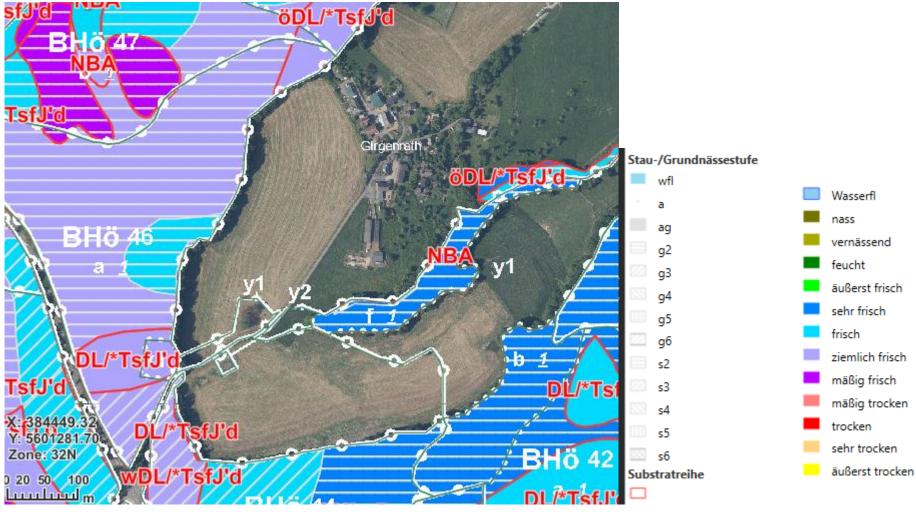
Hier steigt die Basensättigung erst an der Untergrenze des Hauptwurzelraums an. Nur tiefwurzelnde Altbäume sind in der Lage, die Nährstoffe aufzunehmen

4. Unterboden basenhaltig

Die nährstoffarme Zone ist wesentlich mächtiger als bei basenreich. Nur tief wurzelnde Pflanzen der Krautschicht und mehrjährige Bäume können die Nährstoffe im Unterboden nutzen:

5. Mittelboden basenreich

Im obersten Wurzelraum ist die Basensättigung reduziert. Flachwurzelnde krautige Pflanzen und Keimlinge von Waldbäumen wurzeln somit in einem relativ nährstoffarmen Wurzelmilieu.

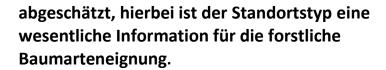

6. Gesamtboden basenreich

Der ganze Wurzelraum ist hoch basengesättigt. Die Pflanzennährstoffe Calcium und Magnesium sind in reichlichem Ausmaß vorhanden und wurzelerreichbar

7. Gesamtboden basenreich/freies Carbonat

Der ganze Wurzelraum ist hoch basengesättigt. Die Pflanzennährstoffe Calcium und Magnesium sind in reichlichem Ausmaß vorhanden und wurzelerreichbar, aber Kalk-intolerante Pflanzen können Chlorose

ZIEL der Standortstypenkartierung ist eine waldbesitzübergreifende Karte:

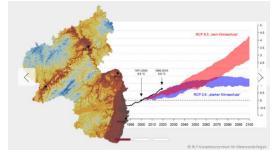


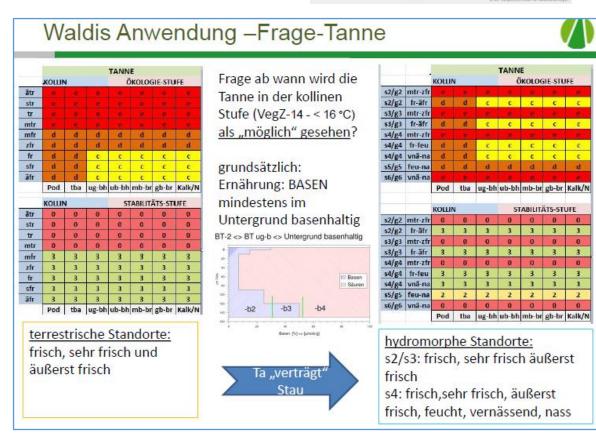
Damit stehen die Informationen wie weitere Anwendungen zur Verfügung wie z.B. das Standortsinformationssystem Baumartenwahl, Abschätzung der Nährstoffnachhaltigkeit bei der Holzernte und Empfehlungen zur Bodenschutzkalkung

Das Standortsinformationssystem Baumartenwahl im Klimawandel (STOIS)

Grundzüge: Für 21 Laubhölzer u. 5 Nadelhölzer wurde die standörtliche Eignung in den Zeiträumen

- Grundlage (1960-2000)
- Nahe Zukunft (2021-2050)
- Ferne Zukunft (2071-2100)




Durch den Klimawandel verändert sich die Wärmestufe und die Frischestufe.

Die Eignung wird beschrieben mit der ökologischen Eignung (Dominanz) u. der Stabilität (erreicht die Baumart, das Schlusswaldziel—Risikoabschätzung u.a. Schadorganismen). Es kommen Ökogramme zum Einsatz.

Im Ergebnis werden drei Eignungsstufen angegeben:

- gut geeignet
- geeignet
- möglich

Abschätzung der Nährstoffnachhaltigkeit bei der Holzernte und Empfehlungen zur Bodenschutzkalkung

Zur Gewährleistung der Nährstoffnachhaltigkeit werden den Waldorten in Abhängigkeit von **Standort und Bestockung** Vulnerabilitätsstufen bzw. Empfindlichkeitsstufen (**Verletzlichkeit des Waldökosystems** gegenüber der Nicht- Einhaltung der Nährstoffnachhaltigkeit)

zugeordnet. Je nach Einstufung sind ggfls. Einschränkungen in der Nutzungsintensität zu beachten (im Staatswald, verpflichtend). Die Vulnerabilitätsstufen bzw. Empfindlichkeitsstufen der Waldorte werden als eine Grundlage für die Hiebsplanung im Wald-Informationssystem Rheinland-Pfalz in Form digitaler Karten zur Verfügung gestellt.

Beispiel: Berechnung (Bilanz) der Vulnerabilitässtufe eines Waldort + Bodenschutzkalkung